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Melting and Volume Vaporization Kinetics Effects in
Tungsten Wires at the Heating Rates of 1012 to
1013 K/s1

A. D. Rakhel2,3 and G. S. Sarkisov4

Experimental results on electrically exploded tungsten wires at the heating
rates of 1012–1013K · s−1 and their interpretation in the framework of a
one-dimensional magneto-hydrodynamic model are presented. The effects of
both melting and volume vaporization observed in these experiments are dis-
cussed. It is shown that superheating of solid tungsten does not take place
at these heating rates (within a 10% experimental uncertainty). Some direct
measurements performed in this study, and comparison of different quantities
measured and calculated by the model, suggest that the volume vaporization
starts close to a binodal line.
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tungsten; vaporization.

1. INTRODUCTION

Kinetics of volume vaporization in electrically exploded wires has been
discussed in the literature for a long time. Since the work of Bennett [1],
it is usually assumed that the liquid phase is essentially superheated. Ben-
nett developed a so-called vaporization wave model to describe the liquid–
vapor phase transition caused by intense Joule heating. The model was
based on the assumption that vaporization starts from the surface of a
wire heated by an electrical current pulse and propagates to its axis as
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a wave. In the wave front the wire material undergoes a transition from
the superheated liquid state to a two-phase liquid–gas state close to local
thermodynamic equilibrium. The possibility of boiling in the bulk of the
superheated liquid was considered to be less probable because the boiling
kinetics and inertia effects in the two-phase mixture prevent such a sce-
nario. The typical heating rates for experiments performed by Bennett are
of the order of 109 K · s−1, which corresponds to a characteristic time of
about 1 µs for an exploding wire residing in the liquid state.

Martynyuk [2] has introduced a hypothesis about the phase explo-
sion to explain the exploding wire dynamics at these heating rates. It is
assumed that a metal wire remains homogeneous during an initial stage
of the heating process when the wire material is in a solid-state region
and then in the liquid state before boiling begins. The boiling starts when
the liquid reaches states close to a spinodal line. Such vaporization should
behave like an explosion as the internal energy of the superheated liquid
approaches the sublimation energy.

On the other hand, in the work [3] devoted to investigation of unload-
ing of metals initially compressed by a shock wave, the start of boiling was
clearly detected and used to determine the boiling curve position at high
temperatures. In these experiments porous specimens were subjected to the
shock compression and the velocity of the rear specimen surface was mea-
sured when the shock wave emerged at it. As a result of the volume vapor-
ization, the velocity showed an additional increase in comparison with that
for a superheated liquid. In this paper [3] a relaxation time for the volume
vaporization was estimated to be on the order of 1 ns or even less.

Thus, the dynamic experiments were interpreted by the authors [1–3]
using different points of view. It should be noted that no direct evidence
of the remarkable superheating achieved in experiments [1, 2] is provided.
The main goal of the present study is to find such evidence or to con-
firm the assumption [3] that the boiling starts close to the binodal line.
The point is that the volume vaporization kinetics plays a very important
role in the entire exploding wire dynamics [4]. For many applications a
model should be developed describing the hydrodynamic flow caused by
an exploding wire. This model should answer some specific questions, in
particular, about the distributions of physical quantities across the plasma
column formed by the wire [5, 6]. To answer the questions, the volume
vaporization kinetics should be described correctly in such a model.

In the work of Ref. 4, a maximum heating rate of 1011 K · s−1 was
achieved. No superheating effects were detected in these experiments.
Using the relaxation time for the volume vaporization of 1 ns from Ref.
3, one can obtain superheating of the order of 100 K for experiments
[4], which is a very small value to be detected at the liquid tungsten
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temperature of about 10 kK. It is of interest to answer the question: what
is the heating rate that ensures maximum superheating, i.e., achievement
of states close to the spinodal line? One may suppose that at this heating
rate the temperature increases starting from the boiling point temperature
Tb (P ) to the spinodal temperature Ts (P ) in 1 ns or less. In the case of
tungsten one obtains a heating rate of about 7.7×1012 K · s−1. In this esti-
mate we used for the normal boiling point temperature of tungsten a value
of 5830 K [7], and for the spinodal temperature a value of Ts ≈13,500 K.
The spinodal temperature was calculated by the van der Waals model and
the value of Ts at zero pressure was used:

Ts(0)= 27
32

Tc, (1)

where Tc is the critical temperature of tungsten (Tc ≈16,000 K [4]).
The extremely high heating rates estimated above were used in the

recent exploding wire experiments [8]. In this paper we present theoretical
and experimental results of investigations of the exploding wire dynamics
at heating rates of 1012 to 1013 K · s−1. Experiments with tungsten wires
in air have been performed using the installation described in Ref. 8. The
heating dynamics are described in the framework of a self-consistent one-
dimensional magnetohydrodynamic (1D MHD) model [4, 9]. It is demon-
strated that the model reproduces adequately (with a discrepancy less than
10%) all the dependences measured over the entire range of the heating
rates. It is shown that both the melting and volume vaporization (boiling)
start close to the corresponding equilibrium phase boundaries even at the
maximum heating rates applied.

2. EXPERIMENTAL SETUP

A schematic diagram of the electrical circuit used is presented in
Fig. 1. A 100 kV-Maxwell 40151-B pulse generator with a 6 nF capacitor
bank and a 60 kV charging voltage provided an electrical current pulse. A
9 m long 50� coaxial cable delivered the current pulse from the genera-
tor to a wire. The wire was placed in a coaxial target unit with four diag-
nostic windows. Figure 2 shows the coaxial target unit and the positions
of a current and voltage detector. The downstream current through the
wire was measured with a 2 GHz bandwidth 0.1 � coaxial-shunt resistor.
The anode-ground voltage was measured with a V-dot (capacitive divider).
A Si PIN-diode with a 1 ns rise time monitored the light emission power
from the wire. All electrical waveforms were recorded with a 4-channel,
1-GHz digital scope, Tektronix TDS 684C. An SBS-compressed Nd:YAG
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Fig. 1. Schematic diagram of electrical circuit.

Q-switch laser with 120 mJ energy at 532 nm and with 150 ps pulse dura-
tion (EKSPLA SL-312) was used for frame image shadowgraphy of the
entire wire. Streak-camera (Hamamatsu C1587-01) radius–time diagrams
of the exploding wire were obtained using a high-power pulse diode
laser back lighter (Power Technology, IL30C, 905 nm, 10 W, 200 ns) and
appropriate relay optics.

The experimental voltage waveform consists of resistive and inductive
parts. For a fast current rate (∼ 150 A · ns−1) experiment, it is important
to calculate correctly the inductive voltage contribution to get a true value
for the remaining resistive part. To get the inductance of the coaxial tar-
get unit, we measured the voltage waveforms for a shorted circuit, where
a copper wire with a 3 mm diameter and 2 cm length was used in place of
the specimen. The sample short circuit waveforms of the voltage, current,
and a reconstructed inductive voltage L3 dI/dt are presented in Fig. 3. For
best fit for the inductive voltage, L3 ≈50 nH was obtained. The experimen-
tal curves presented in Fig. 3 demonstrate correctness of the measured cur-
rent and voltage waveforms, as long as fairly good agreement between the
inductive voltage L3dI/dt and the measured voltage occurs. Here L3 is
actually the sum of the copper wire inductance Lshort (∼ 8.0 nH) and the
target unit inductance. In our experiments with tungsten wires discussed
below, the wire inductance was calculated by

Lw =2l ln(D/d0), (2)

where l is the wire length, d0 is its initial diameter, and D is the return
current structure diameter (for the coaxial target unit used in our experi-
ments, D≈2.3 cm). Equation (2) gives LW in nH, when l, d0, and D are in
cm. The resistive voltage across the wire can be calculated by subtracting
from the measured voltage the inductive voltage contribution (LW +L3 −
Lshort)dI/dt .

All experiments in this study were carried out in air with tungsten
wires having a diameter of 16.2 µm and a length of 2 cm. These wires were
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Fig. 2. Vacuum chamber with coaxial target unit.

manufactured by the California Fine Wire Company5 with a specified
purity of 99.95%.

5http://www.calfinewire.com
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Fig. 3. Current (1) and voltage (2) waveforms measured for short circuit load. Inductive
part of the calculated voltage (3) demonstrates good agreement with the measured voltage
waveform.

3. ELECTRICAL CIRCUIT ANALYSIS

To investigate the kinetics effects in tungsten wires at heating rates up
to 1013 K · s−1, measurements of the current through the wire should be
performed with high precision. It was a paramount task to determine the
uncertainty of the current measurements. To solve this task, the shorted
circuit current waveforms were calculated and compared with the mea-
sured ones.

Let us now discuss the approach used in these calculations. The
pulser and the target unit were treated as quasistationary circuits since
their geometrical dimensions are relatively small (of the order of 10 cm)
while for the cable, telegraphic equations were solved. The current in the
pulser circuit I (t) satisfies the following equation:

d2I

dt2
+γ1

dI

dt
+ω2

1I =0 (3)
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with γ1 =Z2/L1, and ω1 =1/
√

L1C1, where L1 is the pulser circuit induc-
tance, C1 is the capacitance of the capacitor bank, and Z2 = √

L2/C2 is
the cable impedance. Here and below we designate index 1 for the pulser
circuit parameters, 2 for that of the cable, and 3 for the target unit. The
solution of Eq. (3) has a form,

I1(t)≈ U0

ξZ2

[
exp

(−γ −
1 t

)− exp
(−γ +

1 t
)]

(4)

with γ +
1 = γ1(1 + ξ), γ −

1 = γ1(1 − ξ), and ξ =
√

1− (2ω1/γ1)
2, where U0 is

the charging voltage of the capacitor bank. In the case, the cable atten-
uation may be neglected, the following relation between the voltage U

and the current magnitude I for the wave generated in the cable is valid:
U =±Z2I , where the plus sign corresponds to the wave moving from the
pulser to the target unit. The total current through the target unit is a
superposition of the incident wave Ii(t) and a reflected one Ir(t), I = Ii +
Ir. It can be shown that the total current through the target unit satisfies
the following equation:

dI

dt
+γ3I =2γ3Ii(t), (5)

where γ3 =Z2/L3. In Eq. (5) the dependence Ii(t) given by Eq. (4) should
be used. The solution of Eq. (5) satisfying the initial condition I (0)=0 is

I (t)= 2U0

ξZ2

[
exp(−γ −

1 t)− exp(−γ3t)

1−γ −
1 /γ3

− exp(−γ +
1 t)− exp(−γ3t)

1−γ +
1 /γ3

]
. (6)

In Fig. 4 this temporal dependence is compared with the measured
result (inductance L1 was taken to be 250 nH). The solution given by
Eq. (6) is valid only at times t <t2, where t2 is the instant of time when the
second current wave reaches the target unit, i.e., the current wave reflected
from the target unit and then from the pulser returns back. The interval of
time between the neighbor current maxima in Fig. 4 is equal to the ratio
of the double cable length to the wave velocity, i.e., 2l2/υ ≈ 90 ns, where
υ =1/

√
L2C2 and l2 =9 m (for the RG 220 cable used, υ ≈20 cm · ns−1).

On the basis of this comparison, we conclude that the electrical cir-
cuit used in our experiments has well defined parameters and the current
measurements were performed with a precision better than 5% (as to the
current magnitude). This is the reason why all the MHD computations
presented below were carried out for prescribed temporal dependences of
the current through the wire (these temporal dependences were taken from
the corresponding experiments).
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Fig. 4. Comparison of temporal dependences of the electrical current in shorted circuit:
marks, experiment; solid line, analytical solution by Eq. (6).

4. MAGNETOHYDRODYNAMIC MODEL

To describe the hydrodynamic flow generated by a current pulse
applied to a wire, the 1D MHD model [6, 9] was used. The correspond-
ing set of equations of the model consists of the local laws of conservation
of mass, linear momentum, and energy together with Maxwell’s equations.
It is assumed that the Z-pinch symmetry is maintained during the heating
process. For the coordinate system the z-axis of which is directed along
the axis of a wire, all physical quantities are functions of only the radius
vector r and the time t . The only nonzero component of the velocity for
this flow is the radial component. The electrical current density has a com-
ponent only along the z-axis, and the magnetic field strength has only an
azimuthal component.

It is easy to see that effects of the heat conduction, viscosity, and
radiation may be neglected under these conditions, and therefore the cor-
responding terms were dropped in the equations of the model. The evap-
oration from the wire surface can be also neglected in this case, since
this process is governed by the heat conduction from the bulk to the sur-
face. Indeed, the characteristic time scale for the heat conduction is on the
order of a2/χ , where χ is the thermal diffusivity of tungsten and a is
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the specimen radius. For a = 8µm and χ ≈ 0.1 cm2 · s−1 [10], we obtain
a value of about 6 µs, what is much larger than the typical time scale for
the heating process in our experiments (which is 10–30 ns).

The hydrodynamic flow was computed for two regions: the wire and
surrounding air. We assumed that the substances do not mix with each
other at the boundary. Thermodynamic functions of tungsten in the region
of the liquid–vapor phase transition were obtained using an equation-of-
state model from Ref. 11 with some modifications to better reproduce the
behavior of the functions at high temperatures [4]. MHD computations
performed in Ref. 4 have allowed the authors to establish the experimen-
tal conditions under which an expanding tungsten wire remains practically
homogeneous down to a density of tungsten four times less than the stan-
dard solid density. These heating regimes were used to investigate the ther-
mophysical properties of tungsten at substantially higher temperatures and
pressures than those attained in slower experiments [12–14]. The fitting
parameters of the EOS model were chosen [4] using these data.

Information on the electrical conductivity of tungsten in the liquid–
vapor phase transition domain is also required for our computations. The
basic idea of the approach to construct a conductivity dependence on the
density and temperature in this domain is the following. In the condensed
state (solid and liquid at low temperatures, T < Tc), the dependence was
taken from experiments using an approximation of the experimental data
obtained in Refs. 4, 9, and 12–14. In the gaseous state the conductivity
was calculated using the approach presented in Ref. 15. In the interme-
diate region an interpolation was used. In the present work we focus on
the liquid–vapor phase transition at pressures less than the critical pressure
Pc (11 ± 2 kbar [4]). In this case one has no need for a detailed descrip-
tion of the electrical conductivity in the metal–nonmetal transition and the
strongly coupled plasma region of the phase diagram. It is assumed that
in the two-phase liquid–gas region the phases constitute a fine dispersed
mixture. The conductivity of the mixture was calculated by means of the
Landauer formula [16].

5. MELTING

Time-resolved waveforms of the current through the wire and the
resistive part of the voltage drop across its length are presented in Fig. 5.
The discrepancies between the calculated and measured voltages are less
than 10% (in the time interval from 25 to 40 ns). The solid line for the
current dependence in Fig. 5 represents a numeric approximation of the
experimental data points and was used in the MHD computations as an
input function. A laser shadowgram of the wire at the moment of time
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Fig. 5. Current through the wire (1) and resistive voltage drop across wire (2): marks,
experiment; voltage solid line, modeling result; current solid line, numerical approximation
of the experimental data points used in this modeling.

Fig. 6. Laser shadowgram of an exploding W wire of 16.2 µm diameter and 2 cm length
at the moment of time t =1000 ns from the voltage peak.

t =1000 ns is presented in Fig. 6. As one can see, the column formed by
the wire expands uniformly along the axial direction during a sufficiently
long period of time. In the shadowgram an expanding wire core with
a slightly perturbed boundary following a shock wave can be seen. The
shock wave is uniform along the axial direction. Figure 6 demonstrates
the validity of the assumption that the cylindrical symmetry is maintained
during the process.
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This paper deals primarily with vaporization kinetics effects. Never-
theless, the melting kinetics effects at the high heating rates applied in
our experiments were also carefully investigated. The question about the
melting kinetics can be formulated as follows: is it possible to observe
the effects of superheating of the solid phase. Our approach was based
on the well-known fact that the dependence of a tungsten wire resistance
on enthalpy shows remarkable breaks at the beginning and end of melt-
ing [12–14]. The resistive voltage determined from our measurements was
not sensitive enough to observe these features in the resistance versus spe-
cific enthalpy dependence. Therefore, the peculiarities were investigated in
the dependences for the directly measured quantities: the current, the volt-
age, and the electrical heating power plotted as functions of the specific
enthalpy.

In Fig. 7 the measured current through the wire and the electrical
power input to it are shown as functions of the specific enthalpy. The
electrical power is the product of the measured current through the wire
and the resistive voltage across its length. The enthalpy was obtained
by integrating the electrical power over time. It is obvious that there
are two clear expressed breaks in the current dependence at the values
of enthalpy that correlate with the solid- (0.64 kJ · g−1) and liquid-phase
enthalpy (0.92 kJ · g−1) at the melting point [17]; the scatter of literature
data with respect to these enthalpies is 6% [12–14, 17]. The electrical
power exhibits a plateau in the melting region. Therefore, we can empha-
size that there are no considerable shifts in the solid- and liquid-phase
enthalpies at the melting point in comparison to the data obtained at
the heating rates that are three orders of magnitude less. This demon-
strates that no superheating (within 10% uncertainty) of solid tungsten is
observed in our experiments6 .

It was important for observations of the features in the current and
electrical power waveforms at melting to match the load and the pulser
parameters properly. Only in experiments with the 16 µm in diameter
and 2 cm long wires these features were manifested clearly enough to be
detected.

In general, the effects of superheating should depend on the crystal
structure of the specimen and, in particular, on the crystallite dimensions.
What should be the average size of the crystallites such that the superheat-
ing is small? To answer the question we should make some estimates. The
melting fronts starting at the crystallite boundaries are governed by the

6More accurate estimate of the superheating effect can be performed calculating the heat
of fusion, i.e., difference between the enthalpies at the breaks. In this case the errors in
determining the absolute values of the enthalpies will be compensated.
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Fig. 7. Current through the wire (1) and electrical power input to wire (2) versus spe-
cific enthalpy. Grey area indicates the literature data for the solid (s) and liquid (l) state
enthalpy at the melting point.

conduction transport. Therefore, if the average crystallite size is smaller
than 2

√
χtm (tm is the melting duration), the superheating is small. For

the experiment presented in Fig. 7, tm ≈1 ns and, therefore, the crystallites
should be smaller than about 0.2 µm. Since the initial wire diameter is
specified by the wire manufacturer with a precision of 0.1µm, it is rea-
sonable to conclude that the size of the crystallites in the tungsten wires
utilized in the present work is <0.1µm.

6. VAPORIZATION

Discussion of the vaporization kinetics is started from Fig. 8 in which
the pressure and the so-called resistivity without the volume correction
are shown as functions of the specific enthalpy. This resistivity (R∗) is a
directly measured quantity and, on the other hand, it can be compared
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Fig. 8. Pressure (a) and resistivity without volume correction (b) versus specific enthalpy.
Thick lines (1), modeling result for this work-experiment; thin line (2), pressure calculated
by analytic formula, Eq. (9); dashed line (3), modeling result for an experiment reported
in Ref. 9. Closed circles, this work-experiment; open triangles up [9]; triangles down [12];
squares [13].

with literature data. For the case when the specimen is heated homoge-
neously, this quantity is proportional to the ratio of the density ρ to the
electrical conductivity σ ,

R∗ = 1
σ

ρ

ρ0
(7)

(ρ0 is the standard solid density).
As one can see in Fig. 8a, the pressure in the specimen (curve 1) does

not vary monotonically; there are two maxima. This is a result of the tem-
poral dependence of the Joule heating power having two maxima (which
can be inferred from the current and voltage temporal dependences shown
in Fig. 5). To explain the main features of the pressure behavior demon-
strated in Fig. 8a, an analytical solution of the hydrodynamic equations
for a wire subjected to pulse heating [18] can be used. The solution was
deduced for the case cst �a(t), where cs is the speed of sound, a(t) is the
wire radius, and t is a characteristic time scale for the energy input. In this
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case the density profile in the wire can be represented as a sum of a homo-
geneous term ρh(t) depending only on time and a small inhomogeneous
term ρ′(r, t):

ρ(r, t)=ρh(t)+ρ′(r, t). (8)

The pressure profile has the form,

p(r, t)≈ ρ0a
2
0

2a

d2a

dt2

[
1−

( r

a

)2
]

, (9)

where a0 is the initial radius of the wire. The thin line in Fig. 8a cor-
responds to the pressure at the wire axis (r = 0) calculated by means
of Eq. (9). In this calculation we used the temporal dependence of the
Joule heating power as an input function. The following dependence of the
liquid tungsten density versus specific enthalpy was used:

ρ =ρ0(1−αw), (10)

where w is the specific enthalpy measured from the standard state and
α is a constant which can be expressed through the thermal expansion
coefficient and the heat capacity cP(α≈0.12 g · kJ−1 [4]). Equation (10) was
shown to be valid for solid and liquid tungsten in a wide density range
[4]. The specific enthalpy as a function of time was determined from the
measured current and voltage and was then used to obtain the deriva-
tive d2a/dt2, where the product ρh(t)a(t)2 is a constant in this approxi-
mation. The difference between the Joule heat and the enthalpy is small
under these conditions, and therefore, it can be neglected. As a result, the
following expression can be obtained for the derivative (the radius accel-
eration):

1
a

d2a

dt2
= 1

2

[
α

1−αw

d2w

dt2
+ 3

2

(
α

1−αw

dw

dt

)2
]

. (11)

As one can see, the pressure calculated by Eq. (9) shows qualitatively
the same behavior as that obtained by means of the complete hydrody-
namic model. Nevertheless, the absolute values of the pressure given by
the analytical solution are remarkably lower. This is due to the impor-
tance of the delay effects under these conditions. Indeed, the acoustic time
a/cs is about 2 ns for the solid wire at room temperature and increases
to about 6 ns for the melted wire at the normal boiling-point temperature;
the value of the liquid tungsten sound speed at the normal boiling point
is 2.5 km · s−1 [14]. As follows from Fig. 5, the half width of the current
peaks is comparable with the estimated acoustic time. Thus, the condition
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cst � a(t) is not valid. Therefore, one may not expect that the approach
developed in Ref. 18 will provide quantitatively correct results in this case.
The inertia effects are underestimated by Eq. (9). This is the reason why
the difference exists in the timing of the maxima for the pressure curves
calculated by Eq. (9) and that obtained by means of the 1D MHD model.

To show the contribution of the pinch effect, the magnetic pressure
pH was calculated:

pH(r, t)≈10−3Ij

[
1−

( r

a

)2
]

, (12)

where I is the current magnitude and j is the current density (SI units are
used). Equation (10) was obtained for the quasistatic limit, i.e., when cst �
a. In fact, the thin line presented in Fig. 8a is a superposition of two lines:
the pressure obtained by Eq. (9) and the total pressure, i.e., the sum of the
inertia pressure giving by Eq. (9) and the magnetic pressure by Eq. (12). It
seems to be clear that the magnetic pressure can be neglected under these
conditions.

The next important thing which can be inferred from Fig. 8 is a fairly
good agreement between our measurements and those of Ref. 9. The pres-
sure curves calculated for both these experiments intersect at an enthalpy
of 3.1 kJ · g−1. The corresponding values of the resistivity at this enthalpy
practically coincide (to within the experimental uncertainty). Comparison
of our data with those obtained in Refs. 12 and 13 should be performed at
the same pressures that were used in the referenced studies. In experiments
[12, 13] the pressures in the range of 2–5 kbar were applied to a wire-
shaped specimen. In our experiment presented in Fig. 8, this low-pressure
region was achieved only in a narrow enthalpy range of 0.6–1.0 kJ · g−1.
As one can see, the resistivity curve for our experiment intersects the
curves corresponding to Refs. 12 and 13 in just this enthalpy range.

Based on this comparison, two important features in the behavior of
the tungsten resistivity under pressure have been revealed. As one can see
in Fig. 8, in the solid-state region (at an enthalpy < 0.64 kJ · g−1) the resis-
tivity measured in our experiment is lower than those measured at low
pressures [9, 12, 13]. On the contrary, in the liquid-state region (at en-
thalpies > 0.92 kJ · g−1) our resistivity curve exceeds the low-pressure data.
Therefore, we can conclude that the solid tungsten resistivity decreases
with the pressure rise while the liquid tungsten resistivity increases remark-
ably when the pressure increases. Using the data obtained, the pressure
derivative of the liquid tungsten resistivity dσ−1/dP was estimated to be
of the order of 10 µ� · cm · GPa−1 (at an enthalpy of 2.0 kJ · g−1).

One remark should be done on the observations of the breaks in the
dependence of the resistivity on the specific enthalpy at melting discussed
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in Section 5. Due to the influence of pressure, these features were mani-
fested clearly when the dynamic pressure at melting was low enough. As
one can see in Fig. 8, this is the case for the 16 µm diameter wires.

The pressure evolution for this experiment at an enthalpy exceeding
a value of 2 kJ · g−1 shows a continuing decrease followed by a plateau
at 3.3 kbar. This plateau is formed when the substance enters the two-
phase liquid–gas region and the boiling starts. The point is that the cal-
culations were performed for the case when the boiling starts close to the
binodal line. The resistivity measured in our experiment shows a rise very
similar to that predicted by the model. It should be noted that the pres-
sure line shown in Fig. 8a corresponds to the specimen axis; the boiling in
the periphery regions starts earlier. Thus, the 1D MHD simulation results,
assuming that vaporization starts close to the binodal line, are in good
agreement with the experimental data.

To show another vaporization effect, we plot in Fig. 9 the temperature
calculated for several radial layers in the specimen together with the mea-
sured light emission waveform. The layers represent only five cells of the
spatial mesh among the 100–300 cells in the wire region used in our com-
putations. Each layer contains a fixed mass of the substance, i.e., corre-

Fig. 9. Temperature calculated for several radial layers (lines) and the light emission
signal measured (circles) as functions of time.
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sponds to a specific Lagrangian coordinate. The clearly expressed break in
the light emission signal correlates well with the maximum in the near-axis
region temperature achieved at an instant of 42–43 ns. As the specimen
diameter grows, the area from which the light is captured by the diode
increases. Due to this the light emission signal increases even after the
temperature at the near-axis region saturates. It appears that the peripheral
layers in which the temperature decreases remarkably become transpar-
ent and the light emission from the inner regions is captured. The simi-
lar behavior for tungsten wires when a peripheral layer starts to boil and
then becomes transparent has been discussed [4]. This behavior was used
there to estimate the liquid core temperature where the pressure was high
enough to prevent boiling.

A series of experiments was performed in this study to measure the
wire diameter evolution. Streak image shadowgraphy was used. In Fig. 10
the calculated pressure at the wire axis (Fig. 10a) together with the mea-
sured wire radius (Fig. 10b) as functions of time are presented. The corre-
sponding streak image of the wire is shown in Fig. 10c. It is obvious that
the expansion observed in this experiment starts close to the onset of boil-
ing predicted by the simulation. It should be noted that in this series of
experiments an anode-ground breakdown was developed in several nano-
seconds after the instant of time when the remarkable expansion starts.
The breakdown was clearly detected in the voltage and the light emis-
sion waveforms. In spite of this breakdown problem, the streak image data
demonstrate a reasonable correlation with the MHD simulation results.
And furthermore, these direct measurements show that no essential super-
heating of liquid tungsten occurred. Since in the case of remarkable super-
heating, the expansion rate would remain low (as is observed for the
liquid-state region) until the specific enthalpy approaches the sublimation
energy (of about 4.6 kJ · g−1 [7]). For the experiment shown in Fig. 10, the
specific enthalpy corresponding to the instance of time when the expansion
starts is about 3.0 kJ · g−1.

7. CONCLUSIONS

It has been demonstrated that the exploding wire technique utilized
in this work can be used for representative measurements at heating rates
up to 1013 K · s−1. It seems to be clear that the tungsten wires subjected to
these heating rates can be rather accurately described in the framework of
a 1D MHD model.

No remarkable shifts (within a 10% experimental uncertainty) of the
solid and liquid phase enthalpy at the melting point were detected. This
demonstrates that no essential superheating effects take place under these
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Fig. 10. Temporal dependences of the pressure at the (a) wire axis calculated; and the
(b) wire radius measured; (c) streak image used for the radius measurement of a tungsten
wire, 12 µm in diameter and 2 cm in length.

conditions. Some direct measurements performed in this study and com-
parison of different quantities measured and calculated by means the 1D
MHD model have shown that the volume vaporization starts close to the
binodal line.
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